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Finding  Corners
Edge detectors perform poorly at corners.

Corners provide repeatable points for matching, 
so are worth detecting.

Idea:

• Exactly at a corner, gradient is 
ill defined.

• However, in the region around 
a corner, gradient has two or 
more different values. 



Auto-Correlation
• Use self correlation to see if the local 

context is self-similar

FLAT REGION
No local change

EDGE
No change along 

the boundary

SALIENT PONT
Change in 

every direction



Auto-Correlation



The Harris corner detector
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Form the second-moment matrix:

Sum over a small region 
around the hypothetical 
corner

Matrix is symmetric



Simple Case
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First, consider case where:

This means dominant gradient directions align with 
x or y axis

If either λ is close to 0, then this is not a corner, so 
look for locations where both are large.



How to recognize corners?
• Harris Corner Detector

• Shi-Tomasi
– Minimum Eigenvalue



Eigenvalue-based classification



General Case

It can be shown that since C is symmetric:
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So every case is like a rotated version of the 
one on last slide.



To Detect Corners...

• Filter image with Gaussian to reduce noise
• Compute magnitude of the x and y gradients at each 

pixel
• Construct C in a window around each pixel (Harris 

uses a Gaussian window – just blur)
• Solve for corner response R

• If λs are both big (product reaches local maximum and 
is above threshold), we have a corner (Harris also 
checks that ratio of λs is not too high)



Gradient Orientation

Closeup



Corner Detection

Corners are detected 
where the product of the 
ellipse axis lengths 
reaches a local maximum.



Corners are detected 
where the product of the 
ellipse axis lengths 
reaches a local maximum.



Example

Values of R



Example

Flat regions (|R|<10000)



Example

Edges (R<10000)



Example

Corners (R>10000)



Recognition Problem

Want to find
… in here



SIFT

• Invariances:
– Scaling
– Rotation
– Illumination
– Deformation

• Provides
– Good localization

Yes
Yes

Yes

Maybe

Yes

SIFT = Scale Invariant Feature Transform

Distinctive image features from scale-invariant keypoints. David G. Lowe, 
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.



Invariant Local Features

• Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



Advantages of invariant local features

• Locality: features are local, so robust to occlusion 
and clutter (no prior segmentation)

• Distinctiveness: individual features can be matched 
to a large database of objects

• Quantity: many features can be generated for even 
small objects

• Efficiency: close to real-time performance

• Extensibility: can easily be extended to wide range 
of differing feature types, with each adding 
robustness



SIFT
1. Enforce invariance to scale: Compute Gaussian difference max, for 

may different scales; non-maximum suppression, find local maxima: 
keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first derivative to 
zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for 
which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to achieve 
scale invariance, by finding the strongest second derivative direction 
in the smoothed image (possibly multiple orientations). Rotate patch 
so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the 
local image region in a 4x4 pixel region. Do this for 4x4 regions of 
that size. Orient so that largest gradient points up (possibly multiple 
solutions). Result: feature vector with 128 values (15 fields, 8 
gradients).

6. Enforce invariance to illumination change and camera saturation: 
Normalize to unit length to increase invariance to illumination. Then 
threshold all gradients, to become invariant to camera saturation.



Find Invariant Corners
1. Enforce invariance to scale: Compute Gaussian difference 

max, for may different scales; non-maximum suppression, 
find local maxima: keypoint candidates

Idea: Find Corners, but scale invariance

Approach:
• Run linear filter (diff of Gaussians)
• At different resolutions of image pyramid



Difference of Gaussians

Minus

Equals



Build Scale-Space Pyramid
• All scales must be examined to identify scale-

invariant features
• An efficient function is to compute the Difference of 

Gaussian (DOG) pyramid (Burt & Adelson, 1983)

B l u r  

R e s a m p l e

S u b t r a c t



Key point localization

• Detect maxima and minima 
of difference-of-Gaussian 
in scale space



Example of keypoint detection



keypoint detection
3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for 

which this ratio is larger than a threshold.

Threshold on value at DOG peak and on ratio of principle curvatures 
(Harris approach)



Select canonical orientation
4. Enforce invariance to orientation: Compute orientation, to achieve 

scale invariance, by finding the strongest second derivative direction 
in the smoothed image (possibly multiple orientations). Rotate patch 
so that orientation points up.

• Create histogram of local gradient 
directions computed at selected 
scale

• Assign canonical orientation at peak 
of smoothed histogram

• Each key specifies stable 2D 
coordinates (x, y, scale, orientation)

0 2 π



SIFT
5. Compute feature signature: Compute a "gradient histogram" of the local image 

region in a 4x4 pixel region. Do this for 4x4 regions of that size. Orient so that 
largest gradient points up (possibly multiple solutions). Result: feature vector 
with 128 values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation: Normalize to 
unit length to increase invariance to illumination. Then threshold all gradients, 
to become invariant to camera saturation.

• Thresholded image gradients are sampled over 16x16 array of 
locations in scale space

• Create array of orientation histograms

• 8 orientations x 4x4 histogram array = 128 dimensions



Nearest-neighbor feature matching

• Hypotheses are generated by approximate nearest 
neighbor matching of each feature to vectors in the 
database 
– SIFT use best-bin-first (Beis & Lowe, 97) 

modification to k-d tree algorithm
– Use heap data structure to identify bins in order 

by their distance from query point

• Result: Can give speedup by factor of 1000 while 
finding nearest neighbor (of interest) 95% of the 
time



3D Object Recognition

• Extract outlines 
with background 
subtraction



3D Object Recognition

• Only 3 keys are needed 
for recognition, so 
extra keys provide 
robustness

• Affine model is no 
longer as accurate



Recognition under occlusion



Illumination invariance



Location recognition



Local ambiguity: What is this?



A car on the street?



An ashtray on the table?



Context
• Global scene context affects interpretation of local 

patches



The multiple personalities of a blob



 Isolated object may not be recognizable

Distance

Information

Local features

Contextual features



Symptom of only using  local features

Some false alarms
occur in image regions
in which is impossible
for the target to be present
given the context.



Information from the context
The type of scene informs us about the types of objects and their locations

We know there is a keyboard present in this scene even if we cannot see it clearly.

We expect no keyboard present in this scene

… even if there is one!



PartsGlobal 
appearance

Local contextGlobal context

Object size

Inside the object
(intrinsic features)

Pixels

Outside the object
(contextual features)


